93 research outputs found

    Stellar variability in open clusters. I. A new class of variable stars in NGC 3766

    Full text link
    Aims. We analyze the population of periodic variable stars in the open cluster NGC 3766 based on a 7-year multi-band monitoring campaign conducted on the 1.2 m Swiss Euler telescope at La Silla, Chili. Methods. The data reduction, light curve cleaning and period search procedures, combined with the long observation time line, allow us to detect variability amplitudes down to the milli-magnitude level. The variability properties are complemented with the positions in the color-magnitude and color-color diagrams to classify periodic variable stars into distinct variability types. Results. We find a large population (36 stars) of new variable stars between the red edge of slowly pulsating B (SPB) stars and the blue edge of delta Sct stars, a region in the Hertzsprung-Russell (HR) diagram where no pulsation is predicted to occur based on standard stellar models. The bulk of their periods ranges from 0.1 to 0.7 d, with amplitudes between 1 and 4 mmag for the majority of them. About 20% of stars in that region of the HR diagram are found to be variable, but the number of members of this new group is expected to be higher, with amplitudes below our milli-magnitude detection limit. The properties of this new group of variable stars are summarized, and arguments set forth in favor of a pulsation origin of the variability, with g-modes sustained by stellar rotation. Potential members of this new class of low-amplitude periodic (most probably pulsating) A and late-B variables in the literature are discussed. We additionally identify 16 eclipsing binary, 13 SPB, 14 delta Sct and 12 gamma Dor candidates, as well as 72 fainter periodic variables. All are new discoveries. Conclusions. We encourage to search for the existence of this new class of variables in other young open clusters, especially in those hosting a rich population of Be stars.Comment: Accepted for publication in A&A. Size of pdf file ~7Mo. Figures 12, 13, 14 and in the Appendix are of lower quality. Full quality images published in A&

    Diplomarbeiten an der Chemieabteilung der Fachhochschule beider Basel 1998/1999: FH-HES

    Get PDF

    Praxisnahe Ausbildung in Technik und Betrieb an der Abteilung Chemie der Ingenieurschule beider Basel

    Get PDF
    Practice-oriented training in technical theory and operational procedures in the Chemisty Department of the Basle State Institute of Technology, Switzerland. The process technology center is presented

    Kombi-Verdampferanlage zur Ausbildung von Chemiker/-innen und Ingenieur/-innen an der Ingenieurschule beider Basel

    Get PDF
    A pilot evaporation plant designed and built to train future chemists and process engineers at the Basle State Institute of Technology, Switzerland, is presented and first experiences from running it are discussed

    Close binary evolution. III. Impact of tides, wind magnetic braking, and internal angular momentum transport

    Full text link
    Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. We study the interactions between the process of wind magnetic braking and tides in close binary systems. We discuss the evolution of a 10 M⊙_\odot star in a close binary system with a 7 M⊙_\odot companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙_\odot star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. (abridged).Comment: 11 pages, 13 figures, accepted for publication in Astronomy and Astrophysic

    Gaia eclipsing binary and multiple systems. Two-Gaussian models applied to OGLE-III eclipsing binary light curves in the Large Magellanic Cloud

    Full text link
    The advent of large scale multi-epoch surveys raises the need for automated light curve (LC) processing. This is particularly true for eclipsing binaries (EBs), which form one of the most populated types of variable objects. The Gaia mission, launched at the end of 2013, is expected to detect of the order of few million EBs over a 5-year mission. We present an automated procedure to characterize EBs based on the geometric morphology of their LCs with two aims: first to study an ensemble of EBs on a statistical ground without the need to model the binary system, and second to enable the automated identification of EBs that display atypical LCs. We model the folded LC geometry of EBs using up to two Gaussian functions for the eclipses and a cosine function for any ellipsoidal-like variability that may be present between the eclipses. The procedure is applied to the OGLE-III data set of EBs in the Large Magellanic Cloud (LMC) as a proof of concept. The bayesian information criterion is used to select the best model among models containing various combinations of those components, as well as to estimate the significance of the components. Based on the two-Gaussian models, EBs with atypical LC geometries are successfully identified in two diagrams, using the Abbe values of the original and residual folded LCs, and the reduced χ2\chi^2. Cleaning the data set from the atypical cases and further filtering out LCs that contain non-significant eclipse candidates, the ensemble of EBs can be studied on a statistical ground using the two-Gaussian model parameters. For illustration purposes, we present the distribution of projected eccentricities as a function of orbital period for the OGLE-III set of EBs in the LMC, as well as the distribution of their primary versus secondary eclipse widths.Comment: 20 pages, 29 figures. Submitted to A&

    The impact of Gaia and LSST on binary stars and exo-planets

    Full text link
    Two upcoming large scale surveys, the ESA Gaia and LSST projects, will bring a new era in astronomy. The number of binary systems that will be observed and detected by these projects is enormous, estimations range from millions for Gaia to several tens of millions for LSST. We review some tools that should be developed and also what can be gained from these missions on the subject of binaries and exoplanets from the astrometry, photometry, radial velocity and their alert systems.Comment: 8 pages, 2 figures, Proceedings of the IAU Symposium No. 282: From Interacting Binaries to Exoplanets: Essential Modeling Tools. Tatranska Lomnica, Slovaki

    The Impact of Gaia and LSST on Binaries and Exoplanets

    Get PDF
    Two upcoming large scale surveys, the ESA Gaia and LSST projects, will bring a new era in astronomy. The number of binary systems that will be observed and detected by these projects is enormous, estimations range from millions for Gaia to several tens of millions for LSST. We review some tools that should be developed and also what can be gained from these missions on the subject of binaries and exoplanets from the astrometry, photometry, radial velocity and their alert system
    • …
    corecore